Abstract

Gallium (Ga)-free InAs/InAsSb superlattices (SLs) are being actively explored for infrared detector applications due to the long minority carrier lifetimes observed in this material system. However, compositional and dimensional changes through antimony (Sb) segregation during InAsSb growth can significantly alter the detector properties from the original design. At the same time, precise compositional control of this mixed-anion alloy system is the most challenging aspect of Ga-free SL growth. In this study, the authors establish epitaxial conditions that can minimize Sb surface segregation during growth in order to achieve high-quality InAs/InAsSb SL materials. A nominal SL structure of 77 A InAs/35 A InA s0.7 Sb 0.3 that is tailored for an approximately six-micron response at 150 K was used to optimize the epitaxial parameters. Since the growth of mixed-anion alloys is complicated by the potential reaction of As2 with Sb surfaces, the authors varied the deposition temperature (Tg) under a variety of Asx flux conditions in order to control the As2 surface reaction on a Sb surface. Experimental results reveal that, with the increase of Tg from 395 to 440 °C, Sb-mole fraction x in InA s1-x Sb x layers is reduced by 21 %, under high As flux condition and only by 14 %, under low As flux condition. Hence, the Sb incorporation efficiency is extremely sensitive to minor variations in epitaxial conditions. Since a change in the designed compositions and effective layer widths related to Sb segregation disrupts the strain balance and can significantly impact the long-wavelength threshold and carrier lifetime, further epitaxial studies are needed in order to advance the state-of-the-art of this material system.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call