Abstract

Polyglycolic acid (PGA) is a biologically friendly material with a wide range of applications. The production of dimethyl oxalate using coal-based syngas and the hydrogenation of dimethyl oxalate can produce the polymerization raw material of PGA, glycolide, which requires a methyl glycolate polymerization and depolymerization process. The intermediate products of the production process were analyzed using gas chromatogram-mass spectrometry (GC-MS) and Orbitrap mass spectrometry (Orbitrap MS), which revealed the presence of cyclic and linear PGAs with different capped ends. The impurities present in the oligomer were mostly methyl-capped PGA and were retained in the subsequent depolymerization process to glycolide, solvent washing can be used to remove this part of the impurity and ultimately obtain a refined glycolide product. Furthermore, it is proposed that the use of the specialized Kendrick Mass Defect (KMD) to plot and analyze PGA compounds obtained using mass spectrometry can enable the direct classification of PGAs without the need for exact molecular formula assignment.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.