Abstract

Cell wall carbohydrate composition and 1-aminocyclopropane-1-carboxylic acid (ACC) content have been determined in chilled (2.5°) and non-chilled (12.5°) cucumber fruit. The major compositional change that accompanied the increased capability for ACC synthesis during chilling was a diminished loss of galactose residues, relative to the loss which occurred at 12.5°. However, the loss of galactose residues increased markedly when fruit were transferred from 2.5° to 20°, and wall galactose levels eventually declined to similar levels in both chilled and non-chilled fruit. Rhamnose, arabinose, xylose, mannose and cellulose content of walls was similar in chilled and non-chilled fruit and did not change substantially upon transfer of fruit to 20°. Upon transfer of chilled fruit from 2.5° to 20°, an increase in the relative amount of galacturonic acid in cell walls occurred; this change did not occur in non-chilled fruit. Thus, chilling stress results in a rapid change in the neutral sugar and galacturonic acid composition of cell wall pectic polysaccharides upon warming.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call