Abstract

Ophiocordyceps sinensis is an entomogenous fungus, and its wildlife resource is very insufficient, as it is widely traded as a natural health product. The artificial culture of O. sinensis is a remarkably effective progress in addressing the problem. Adding microorganisms may improve the process of artificial culture. To analyse the composition and function of the microbial community, high-throughput sequencing was used to explore the microbial community inhabiting wild and artificial O. sinensis and surrounding soil. Significant differences in the microbial communities across groups were revealed by the PCoA analysis. There were 51 fungal and 598 bacterial operational taxonomic units only beingassigned to the fruiting bodies of wild O. sinensis (Wf) by the Venn diagram. From the LEfSe analysis, 39 fungal taxa and 75 bacterial taxa were enriched in Wf. Enzymes that were highly abundant in the core fungi were involved in physiological metabolic processes. Metabolic pathways weredominated in the core bacteria, followed by environmental information processing. The core microorganisms, with the marked differences between Wf and the other three groups, were essential for wild O. sinensis. Functional analysis verified their involvement in the growth, development, and infection of O. sinensis. These core microorganisms may be a valuable resource for the artificial culture of O. sinensis.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call