Abstract

Heparan sulfate (HS) proteoglycans (PGs) interact with a number of extracellular signaling proteins, thereby playing an essential role in the regulation of many physiological processes. One major function of HS is to interact with fibroblast growth factors (FGFs) and their receptors (FGFRs) and form FGF.HS.FGFR signaling complexes. Past studies primarily examined the selectivity of HS for FGF or FGFR. In this report, we used a new strategy to study the structural specificity of HS binding to 10 different FGF.FGFR complexes. Oligosaccharide libraries prepared from heparin, 6-desulfated heparin, and HS were used for the interaction studies by solution competition surface plasmon resonance (SPR) and filter trapping assays. Specific oligosaccharides binding to FGF.FGFR complexes were subjected to polyacrylamide gel electrophoresis (PAGE) analysis and disaccharide compositional analysis using liquid chromatography and mass spectrometry. The competition SPR studies using sized oligosaccharide mixtures showed that binding of each of the tested FGFs or FGF.FGFR complexes to heparin immobilized to an SPR chip was size-dependent. The 6-desulfated heparin oligosaccharides exhibited a reduced level of inhibition of FGF and FGF.FGFR complex binding to heparin in the competition experiments. Heparin and the 6-desulfated heparin exhibited higher levels of inhibition of the FGF.FGFR complex binding to heparin than of FGF binding to heparin. In the filter trapping experiments, PAGE analysis showed different affinities between the FGF.FGFR complexes and oligosaccharides. Disaccharide analysis showed that HS disaccharides with a degree of polymerization of 10 (dp10) had high binding selectivity, while dp10 heparin and dp10 6-desulfated heparin showed reduced or no selectivity for the different FGF.FGFR complexes tested.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.