Abstract

Bacteria able to accumulate porphyrins can be inactivated by visible light irradiation thanks to the photosensitizing properties of this class of aromatic pigments (photodynamic therapy, PDT). Since the bacterial resistance to antibiotic is growing, PDT is becoming a valid alternative. In this context, the pathogen Helicobacter pylori (Hp) is a suitable target for PDT since it spontaneously produces and accumulates porphyrins. It is then important to understand the spectroscopic behavior of these endogenous species to exploit them as photosensitizers, thus improving the results given by the application of PDT in the treatment of Hp infections. In this work we extracted porphyrins from both a laboratory-adapted and a virulent strain of Hp, and we performed spectroscopic and chromatographic experiments to collect information about the composition and the spectrophotometric features of the extracts. The main components of the porphyrin mixtures were identified and their relative contribution to the global red fluorescence was examined.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.