Abstract
The chemical composition and quantitative molar ratios among all components of biodegradable polyphosphoester copolymers of DL-lactide and ethylphosphate were determined by a comprehensive set of NMR spectroscopic methods. The polyphosphoester copolymers studied were synthesized using condensation polymerization of oligomeric DL-lactide prepolymers and ethyl dichlorophosphate. Conclusive identification of the chemical shift patterns of all functional groups in the copolymers required additional NMR methods such as 31P-NMR and two-dimensional 1H–1H COSY NMR, in addition to the synthesis and comparative NMR analysis of model compounds possessing identical phosphoester linkages in the polyphosphoester copolymers. For the polymers synthesized using the bulk polycondensation process, 1H–1H COSY NMR analysis revealed the presence of a small amount of side products that were undetected by 1H-NMR alone. These side reactions most likely occurred between the pendant ethoxy group of the phosphoesters and the hydrogen chloride gas generated in the bulk polycondensation process. 31P-NMR spectra of the copolymers revealed a consistent triple-peak pattern characteristic of phosphoesters linked to a racemic mixture of D,L-lactides. These results offered new insight into the side reactions occurring in bulk polymerization of polyphosphoesters and provided a powerful tool of characterizing complex biodegradable polymers. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 90: 4021–4031, 2003
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.