Abstract

Extracellular matrix (ECM)-mimicking microsized cell carriers featuring a semi-isolated chamber facilitate the study of cellular heterogeneity as well as intercellular communication. However, the semiopen shaping of the designated gel mixture remains unattainable with current methods. We report an oil-phase freeze-shrink self-molding mechanism for generating size- and composition-tunable cradle-shaped microgels (microcradles) from water-in-oil droplets. The universality of this shape transition principle is demonstrated with six types of polysaccharides dispersed in a poly(ethylene glycol) diacrylate (PEGDA) or methacrylate gelatin (GelMA) matrix. By doping the microcradles with the major ECM component, hyaluronic acid sodium, we demonstrate a label-free selective culture of CD44 receptor-rich cells and the formation of cell spheroids within 3 days. This cryo-induced cradle-shaping strategy enables the functionalization of microcarriers for selective cell culture, thereby allowing them to be used for intercellular communication, drug delivery, and the construction of structural units for osteogenesis and 3D printing.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.