Abstract

A facile route to scalable production of N and S co-doped, hierarchically porous carbon nanofiber (NSHCF) membranes (ca. 400 cm2 membrane in a single process) is reported. As-synthesized NSHCF membranes are flexible and free-standing, allowing their direct use as cathodes for efficient electrochemical CO2 reduction reaction (CO2 RR). Notably, CO with 94 % Faradaic efficiency and -103 mA cm-2 current density are readily achieved with only about 1.2 mg catalyst loading, which are among the best results ever obtained by metal-free CO2 RR catalysts. On the basis of control experiments and DFT calculations, such outstanding CO Faradaic efficiency can be attributed to the co-doped pyridinic N and carbon-bonded S atoms, which effectively decrease the Gibbs free energy of key *COOH intermediate. Furthermore, hierarchically porous structures of NSHCF membranes impart a much higher density of accessible active sites for CO2 RR, leading to the ultra-high current density.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.