Abstract

We arc deposit Cr-rich Cr-N coatings and show that these coatings are a promising alternative to electrodeposited hard chrome. We find that the substrate bias is of importance for controlling the N content in the grown coatings as it determines the degree of preferential resputtering of N. The substrate bias also affects the substrate temperature and film growth rate. Higher bias results in higher temperatures due to higher energy transfer to the substrate, while the growth rate decreases due to an increased re-sputtering. The N content affects the morphology, microstructure, hardness, and resistivity of the coatings. The hardness increases from 10 GPa with 0.5 at. % N to 17 GPa with 7.5 at. % N, after which no further increase in hardness is seen. At the same time, the grain structure changes from columnar to more featureless and the resistivity rises from 15 to 45 μΩ cm.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.