Abstract

Abstract Segmented thermoelectric generators (TEGs) comprising multiple TE elements can operate over a large thermal gradient without inherent conversion efficiency (ZT) losses of materials. However, despite excellent theoretical efficiencies, the performance of actual segmented TEGs are critically affected by several challenges related to material incompatibility and limited design flexibility in conventional fabrication processes. Herein, we report the multi-material 3D printing of composition-segmented BiSbTe materials by the sequential deposition of all-inorganic viscoelastic TE inks containing BixSb2-xTe3 particles, tailored with Sb2Te42− chalcogenidometallate binders. The peak ZTs of the 3D-printed materials controllably shifted from room temperature to 250 °C by composition engineering of BixSb2-xTe3 particles. We fabricated the optimally designed TEG comprising the 3D-printed, composition-segmented tri-block Bi0.55Sb1.45Te3/Bi0.5Sb1.5Te3/Bi0.35Sb1.65Te3 TE leg, which extends the peak ZTs and satisfies full compatibility across the entire temperature range, realizing a record-high efficiency of 8.7% under the temperature difference of 236 °C. Our approach offers a promising strategy to optimize segmented TEGs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.