Abstract

A quantum process encodes the causal structure that relates quantum operations performed in local laboratories. The process matrix formalism includes as special cases quantum mechanics on a fixed background space-time, but also allows for more general causal structures. Motivated by the interpretation of processes as a resource for quantum information processing shared by two (or more) parties, with advantages recently demonstrated both for computation and communication tasks, we investigate the notion of composition of processes. We show that under very basic assumptions such a composition rule does not exist. While the availability of multiple independent copies of a resource, e.g. quantum states or channels, is the starting point for defining information-theoretic notions such as entropy (both in classical and quantum Shannon theory), our no-go result means that a Shannon theory of general quantum processes will not possess a natural rule for the composition of resources.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.