Abstract

Gradient poly(methyl methacrylate/n-butyl acrylate) copolymers, P(MMA/BA), with various compositional ratios, were grafted from surface-modified silica nanoparticles (SiO2-g-PMMA-grad-PBA) via complete conversion surface-initiated activator regenerated by electron transfer (SI-ARGET) atom transfer radical polymerization (ATRP). Miniemulsion as the reaction medium effectively confined the interparticle brush coupling within micellar compartments, preventing macroscopic gelation and enabling complete conversion. Isolation of dispersed and gelled fractions revealed dispersed particle brushes to feature a higher Young's modulus, toughness, and ultimate strain compared with those of the "gel" counterparts. Upon purification, brush nanoparticles from the dispersed phase formed uniform microstructures. Uniaxial tension testing revealed a "mechanical synergy" for copolymers with MMA/BA = 3:2 molar ratio to concurrently exhibit higher toughness and stiffness. When compared with linear analogues of similar composition, the brush nanoparticles with gradient copolymers had better mechanical properties, attributed to the synergistic effects of the combination of composition and propagation orientation, highlighting the significance of architectural design for tethered brush layers of such hybrid materials.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.