Abstract
AbstractWe study composition operators of characteristic zero on weighted Hilbert spaces of Dirichlet series. For this purpose, we demonstrate the existence of weighted mean counting functions associated with the Dirichlet series symbol, and provide a corresponding change of variables formula for the composition operator. This leads to natural necessary conditions for the boundedness and compactness. For Bergman‐type spaces, we are able to show that the compactness condition is also sufficient, by employing a Schwarz‐type lemma for Dirichlet series.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.