Abstract
Composition operators with analytic symbols on some reproducing kernel Hilbert spaces of entire functions on a complex Hilbert space are studied. The questions of their boundedness, seminormality and positivity are investigated. It is proved that if such an operator is bounded, then its symbol is a polynomial of degree at most 1, i.e., it is an affine mapping. Fock's type model for composition operators with linear symbols is established. As a consequence, explicit formulas for their polar decomposition, Aluthge transform and powers with positive real exponents are provided. The theorem of Carswell, MacCluer and Schuster is generalized to the case of Segal–Bargmann spaces of infinite order. Some related questions are also discussed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.