Abstract

The lectin pathway of complement is activated by multimolecular complexes that recognize and bind to microbial polysaccharides. These complexes comprise a multimeric carbohydrate recognition subunit (either mannan-binding lectin (MBL) or a ficolin), three MBL-associated serine proteases (MASP-1, -2, and -3), and MAp19 (a truncated product of the MASP-2 gene). In this study we report the cloning of chicken MASP-2, MASP-3, and MAp19 and the organization of their genes and those for chicken MBL and a novel ficolin. Mammals usually possess two MBL genes and two or three ficolin genes, but chickens have only one of each, both of which represent the undiversified ancestors of the mammalian genes. The primary structure of chicken MASP-2 is 54% identical with those of the human and mouse MASP-2, and the organization of its gene is the same as in mammals. MASP-3 is even more conserved; chicken MASP-3 shares approximately 75% of its residues with human and Xenopus MASP-3. It is more widely expressed than other lectin pathway components, suggesting a possible function of MASP-3 different from those of the other components. In mammals, MASP-1 and MASP-3 are alternatively spliced products of a single structural gene. We demonstrate the absence of MASP-1 in birds, possibly caused by the loss of MASP-1-specific exons during phylogeny. Despite the lack of MASP-1-like enzymatic activity in sera of chicken and other birds, avian lectin pathway complexes efficiently activate C4.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.