Abstract
We collected eggs, neonates, and adults of Canada Geese (Branta canadensis interior) and Lesser Snow Geese (Chen caerulescens caerulescens) from Akimiski Island, Nunavut, during the 1996 breeding season. This was done to assess interspecific differences in egg composition, egg-nutrient catabolism, developmental maturity, tissue maturity, and body reserves, and to relate observed differences in those variables to ecological conditions historically experienced by Canada Geese and Lesser Snow Geese. Eggs of both species had identical proportional compositions, but Canada Goose embryos catabolized 13% more of their egg protein, whereas Lesser Snow Goose embryos catabolized 9% more of their egg lipid. Neonate Canada Geese and Lesser Snow Geese had similar protein reserves, relative to body size, but Lesser Snow Geese had relatively smaller lipid reserves than did Canada Geese. Relative to conspecific adults, Lesser Snow Goose goslings generally were structurally larger at hatch than were Canada Goose goslings. Neonate Lesser Snow Geese had more developmentally mature keels, wings, and breast muscles, and larger gizzards and caeca for their body size, than did neonate Canada Geese. Despite hatching from smaller eggs and having a shorter period of embryonic growth, skeletal muscles and gizzard tissues of Lesser Snow Geese were more functionally mature than those of Canada Geese. Increased lipid use during embryonic development could account for how Lesser Snow Geese hatched in a more developmentally and functionally mature state. In turn, differences in developmental and functional maturity of Lesser Snow Geese, as compared to Canada Geese, likely are adaptations that offset metabolic costs associated with their small body size, or to selection pressures associated with high arctic environmental conditions and colonial nesting and brood rearing.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.