Abstract
In the naturally iron-fertilized surface waters of the northern Kerguelen Plateau region, the early spring diatom community composition and contribution to plankton carbon biomass were investigated and compared with the high nutrient, low chlorophyll (HNLC) surrounding waters. The large iron-induced blooms were dominated by small diatom species belonging to the genera Chaetoceros (Hyalochaete) and Thalassiosira, which rapidly responded to the onset of favorable light-conditions in the meander of the Polar Front. In comparison, the iron-limited HNLC area was typically characterized by autotrophic nanoeukaryote-dominated communities and by larger and more heavily silicified diatom species (e.g. Fragilariopsis spp.). Our results support the hypothesis that diatoms are valuable vectors of carbon export to depth in naturally iron-fertilized systems of the Southern Ocean. Furthermore, our results corroborate observations of the exported diatom assemblage from a sediment trap deployed in the iron-fertilized area, whereby the dominant Chaetoceros (Hyalochaete) cells were less efficiently exported than the less abundant, yet heavily silicified, cells of Thalassionema nitzschioides and Fragilariopsis kerguelensis Our observations emphasize the strong influence of species-specific diatom cell properties combined with trophic interactions on matter export efficiency, and illustrate the tight link between the specific composition of phytoplankton communities and the biogeochemical properties characterizing the study area.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.