Abstract

The kinetic theory of regular acceleration of cosmic rays in supernova remnants is used to investigate the expected chemical composition of the rays. It is shown that the shapes of the calculated profiles of the chemical elements making up the cosmic rays are consistent with experiment wherever the results of measurements are available. The acceleration process is accompanied by relative enrichment of the cosmic rays with heavy elements. If the analogous property of the mechanism underlying the injection of superthermal particles into the acceleration regime is taken into account, such enrichment supports the formation of the required composition of cosmic rays in the energy range up to 1014–1015 eV.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.