Abstract

Band alignment engineering is crucial for facilitating charge separation and transfer in optoelectronic devices, which ultimately dictates the behavior of Van der Waals heterostructures (vdWH)-based photodetectors and light emitting diode (LEDs). However, the impact of the band offset in vdWHs on important figures of merit in optoelectronic devices has not yet been systematically analyzed. Herein, the regulation of band alignment in WSe2/Bi2Te3- xSex vdWHs (0 ≤ x ≤ 3) is demonstrated through the implementation of chemical vapor deposition (CVD). A combination of experimental and theoretical results proved that the synthesized vdWHs can be gradually tuned from Type I (WSe2/Bi2Te3) to Type III (WSe2/Bi2Se3). As the band alignment changes from Type I to Type III, a remarkable responsivity of 58.12 AW-1 and detectivity of 2.91×1012 Jones (in Type I) decrease in the vdWHs-based photodetector, and the ultrafast photoresponse time is 3.2 µs (in Type III). Additionally, Type III vdWH-based LEDs exhibit the highest luminance and electroluminescence (EL) external quantum efficiencies (EQE) among p-n diodes based on Transition Metal Dichalcogenides (TMDs) at room temperature, which is attributed to band alignment-induced distinct interfacial charge injection. This work serves as a valuable reference for the application and expansion of fundamental band alignment principles in the design and fabrication of future optoelectronic devices.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.