Abstract

Over the last few decades, functional gradient structures have evolved through natural biological systems, while gradient structures lead to tailored mechanical and physical performance due to the gradual structural change. Herein, composition gradient cellulose and aerogel nanocomposites that regulate their thermal insulation and mechanical performance are reported. The as‐prepared gradient composite shows a thermal conductivity of 32.2 mW m−1 K−1 and flexural modulus of 660 MPa while exhibiting superhydrophobicity and superior reusability. The unique orientation‐dependent thermal insulation and mechanical strength arise from the composition gradients formed by the silica aerogel distribution during the cellulose‐fiber‐percolated network formation, which opens a pathway toward green building thermal insulation materials.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.