Abstract
To investigate the long-term alteration behavior of brannerite, we have undertaken a study of twelve natural samples from a range of geological environments. Our results indicate that seven of the samples exhibit only minor alteration, usually within veinlets or around the rim of the sample. The remaining five samples consist of variable amounts of unaltered and altered brannerite. SEMEDX analyses of unaltered areas indicate that the chemical formulae may deviate from the ideal stoichiometry. The U content ranges from 0.45 to 0.88 atoms per formula unit (pfu). Maximum amounts of the other major cations on the U-site are 0.48 Ca, 0.22 Th, 0.14 Y, and 0.07 Ln (lanthanide = Ce, Nd, Gd, Sm) atoms pfu. The Ti content ranges from 1.86 to 2.10 atoms pfu. Maximum values of other cations on the Ti-site are 0.15 Fe, 0.14 Si, 0.09 Al, 0.06 Nb, 0.04 Mn, and 0.04 Ni atoms pfu. Altered regions of brannerite contain significant amounts of Si and other elements incorporated from the fluid phase, and up to 40-90% of the original amount of U has been lost as a result of alteration. SEM-EDX results also provide evidence for TiO 2 phases, galena, and a thorite-like phase as alteration products. Electron diffraction patterns of all samples typically consist of two broad, diffuse rings that have equivalent d-spacings of 0.31 nm and 0.19 nmi, indicating complete amorphization of the brannerite. Many of the grains also exhibit weak diffraction spots due to fine-grained inclusions of a uranium oxide phase and galena. Using the available age data, these samples have average accumulated alpha-decay doses of 2-170 × 10 16 alphas/mg. Our results indicate that brannerite is subject to amorphization and may lose U under certain P-T-X conditions, but the overall durability of the titanate matrix remains high.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.