Abstract

The mineral composition of the Talatui gold deposit has been studied with modern methods. Previously unknown minerals (ilmenite, siegenite, glaucodot, wittichenite, matildite, hessite, pilsenite, zircon, tremolite, cummingtonite, hercynite, and goethite) have been identified in the ore. A high Re content has been detected in molybdenite. The spatiotemporal separation of Au and Ag is caused by different mineral species of these elements and their diachronous precipitation during the ore-forming process. Gold crystallized along with early mineral assemblages, beginning from virtually pure gold (the fineness is 996). Silver precipitated largely at the end of the process as hessite (Ag2Te) and matildite (AgBiS2). The temperature of ore deposition varied from 610 to 145°C, the pressure was 3370–110 bar, and the salt concentration ranged from 56.3 to 0.4 wt % NaCl equiv. The heterogeneous state (boiling) of fluid at the early stages has been documented. The chemical and isotopic compositions of the fluid testify to its magmatic nature and the participation of meteoric water at late stages in the ore-forming process. Thermodynamic modeling reproduces the main specific features of ore formation, including separation of Au and Ag. A physicochemical model of the gold mineralization in the Darasun ore district has been proposed. On the basis of several attributes, the Talatui deposit has been referred to the prophyry gold-copper economic type.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call