Abstract

The polymerization of lithium 2-acrylamido-2-methyl-1-propane sulphonic acid with N, N′-dimethylacrylamide has yielded polyelectrolyte gels which have the favourable property of being single ion conductors. The use of single ion conductors ensures that the transport number of lithium is close to unity. The mobility of the lithium ion is still quite low in these systems, resulting in low ionic conductivity. To increase ionic conductivity more charge carriers can be added however competing effects arise between increasing the number of charge carriers and decreasing the mobility of these charge carriers. In this paper the monomer ratio of the copolymer polyelectrolyte is varied to investigate the effect increasing the number of charge carriers has on the ionic conductivity and lithium ion and solvent diffusivity using pfg-NMR. Ion dissociators such as TiO 2 nano-particles and a zwitterionic compound based on 1-butylimidazolium-3-( N-butanesulfonate) have been added in an attempt to further increase the ionic conductivity of the system. It was found that the system with the highest ionic conductivity had the lowest solvent mobility in the presence of zwitterion. Without zwitterion the mobility of the solvent appears to determine the maximum ionic conductivity achievable.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.