Abstract

We study composition-differentiation operators acting on the Bergman and Dirichlet space of the open unit disk. We first characterize the compactness of composition-differentiation operator on weighted Bergman spaces. We shall then prove that for an analytic self-map $\varphi$ on the open unit disk $\mathbb{D}$, the induced composition-differentiation operator is bounded with dense range if and only if $\varphi$ is univalent and the polynomials are dense in the Bergman space on $\Omega:=\varphi(\mathbb{D})$.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.