Abstract
Boric oxide based quaternary glasses in the system PbF2–TeO2–B2O3–Eu2O3 have been prepared by melt quenching technique. Density, molar volume, FTIR, UV–Vis techniques were used to probe the structural modifications with incorporation of europium ions in the glass network. An increase in glass density & decrease in molar volume (Vm) values proved the structural changes occurring in coordination of boron atom [conversion of BO3 units to BO4]. This resulted in the increase of the compaction of the prepared glasses with increase in Eu2O3 contents. The amorphous natures of the samples were ascertained by XRD and metallization criterion (M) studies. XPS study showed the values of core-level binding energy [O1s, Eu3d, Eu4d, Te3d, Te4d, Pd4f, Pb5d, O1s, and F1s] of (PbF2–TeO2–B2O3–Eu2O3) the glass matrix. The frequency and temperature dependence of dielectric properties of present glasses were investigated in the frequency range of 1Hz–10MHz and temperature range of 313–773K. The study of dielectric measurements proved good insulating and thermal stability of the prepared glasses. At room temperature, dielectric loss [tanδ] values were negligibly small for prepared glasses and increased with increase in temperature. FTIR spectroscopy results were in good agreement with optical band energy gap, density, molar volume and hardness values revealing network modifications caused by europium ions in the glass structure.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.