Abstract

A new nanoarchitecture of cobalt sulfide (CoSx) is designed by exploiting a Prussian blue analogue. Depending on the sulfidation temperatures, CoSx materials with different compositions and morphologies are obtained. This investigation of the composition-dependent electrocatalytic activity of CoSx for triiodide reduction reaction (IRR) reveals that sulfur-deficient CoSx is more active than sulfur-rich CoSx. When utilized in dye-sensitized solar cells (DSSCs), sulfur-deficient CoSx with a hollow nanocube morphology outperforms platinum (Pt), showing great promise as a Pt alternative. This composition dependency on IRR is attributed to different surface characteristics and electrical properties that vary with CoSx composition. This work highlights the importance of understanding the surface properties of sulfide-based electrocatalysts that are intimately dictated by their compositions as part of a new design principle for a highly active electrocatalyst.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.