Abstract

In the present study, the carbon supported Pd, PdAg and PdAgNi (Pd/C, PdAg/C and PdAgNi/C) electrocatalysts are prepared via NaBH4 reduction method at varying molar atomic ratio for formic acid electrooxidation. These as-prepared electrocatalysts are characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), inductively coupled plasma mass spectrometry (ICP-MS), N2 adsorption-desorption, and X-ray electron spectroscopy (XPS), cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS), chronoamperometry (CA), and lineer sweep voltammetry (LSV). While Pd50Ag50/C exhibits the highest catalytic activity among the bimetallic electrocatalyst, it is observed that Pd70Ag20Ni10/C electrocatalysts have the best performance among the all electrocatalysts. Its maximum current density is about 1.92 times higher than that of Pd/C (0.675 mA cm−2). Also, electrochemical impedance spectroscopy (EIS), chronoamperometry (CA) and lineer sweep voltammetry (LSV) results are in a good agreement with CV results in terms of stability and electrocatalytic activity of Pd50Ag50/C and Pd70Ag20Ni10/C. The Pd70Ag20Ni10/C catalyst is believed to be a promising anode catalyst for the direct formic acid fuel cell.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call