Abstract

AbstractDifferent bulk glass forming alloys in the neighborhood of Zr52.5Cu17.9Ni14.6Al10Ti5 (Vit105) have been investigated by differential scanning calorimetry (DSC), x-ray diffraction (XRD) and small-angle neutron scattering (SANS). Along the Ti/Al line in composition space, Zr52.5Cu17.9Ni14.6Al10−xTi5+x with – ≤ x ≤ +2.5, the glass transition temperature, Tg, and the undercooled liquid regime (the difference between the first crystallization temperature and the glass transition temperature) continually decrease with increasing x. SANS measurements of annealed alloys show interference maxima, giving evidence for decomposition on the nanometer scale, up to a critical temperature Tc. In contrast to Tg, Tc increases with x and thus intercepts with Tg in the range –2.5 ≤ x ≤ –1.25, depending on the time scale of the experiment. At this composi- tion, significant changes in DSC traces and XRD patterns are observed. Additional isothermal DSC experiments show that the onset times for crystallization are significantly different for temperatures below and above Tc. We conclude that Tc, respectively the relation between Tc and Tg, determines the crystallization behavior and the thermal stability of these bulk metallic glasses.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call