Abstract

Non-precious metal electrodes, Ni and Co hydroxides and oxides, have been recently found active towards electro-oxidation of methanol in alkaline. In this article, we present a first and complete study on composition dependence of Ni–Co hydroxides and oxides for methanol electro-oxidation. Ni–Co hydroxide electrodes were prepared by co-electrodeposition on stainless steel mesh (SSM). The atomic ratio of Ni/Ni+Co in Ni–Co hydroxides was controlled by adjusting the ratio of precursor concentration. Ni–Co oxide electrodes were further obtained by annealing the Ni–Co hydroxides. The morphology factors of Ni–Co hydroxides and oxides were revealed by measuring double layer capacitance using cyclic voltammetry (CV). Methanol oxidation reaction (MOR) performance of these Ni–Co hydroxides and oxide electrodes was investigated by CV, and electrochemical impedance spectroscopy (EIS) techniques at room temperature (RT, ∼25°C). It is found that the MOR performance of Ni–Co hydroxides increased with the increase of Ni content, while the performance of Ni–Co oxide electrodes presented a volcano plot. The highest MOR performance, the smallest charge transfer resistance and Tafel slope were found at the atomic composition of 46% Ni. Such an enhancement probably was due to the synergistic effect of co-existing Ni and Co in the spinel structure. In contrast, the electrode with the mixture of Ni oxide and Co oxide was unable to reach such a high activity. The function of Ni in Ni–Co hydroxides and oxides was attributed to facilitating the methanol oxidation, and in low potential it presented high absorption of intermediate products.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.