Abstract

ABSTRACT Computing research on aspirin has produced considerable knowledge of its molecular structure and actions. It has revealed its chemical characteristics and connections with other molecules. Data from the study will be used to further investigate the effects of the drug and potential new uses for it. Using Density Functional Theory (B3LYP/cc-pVDZ) computations, we analyzed the optimal molecular shape, vibrational frequencies, 1H- and 13C-NMR chemical shifts. We also investigated electronic structural factors, such as dipole moment (μ), hardness (η), softness (σ), electronegativity (χ), electrophilicity index (ω), nucleophilicity index (ε), and chemical potential (Pi), which are connected to corrosion inhibition efficacy. Additionally, we calculated the fraction of transferred electrons (ΔN) to determine the interaction between the iron surface and organic molecules. The calculations revealed a positive association between organic-based corrosion inhibitors and quantum chemical parameters processes. Thus, the behavior of corrosion inhibitors can be predicted without the need for experimental investigation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call