Abstract
In this study, the effects of composition and phase constitution on the mechanical properties and magnetic performance of AlCoCuFeNix (x = 0.5, 0.8, 1.0, 1.5, 2.0, 3.0 in molar ratio) high entropy alloys (HEAs) were investigated. The results show that Ni element could lead to the evolution from face centered cubic (FCC), body centered cubic (BCC) and ordered BCC coexisting phase structure to a single FCC phase. The change of phase constitution enhances the plasticity but reduces the hardness and strength. One of the interesting points is the excellent soft magnetic properties of AlCoCuFeNix HEAs. Soft magnetic performance is dependent on composition and phase transition. AlCoCuFeNi1.5 alloy, achieving a better balance of mechanical and magnetic properties, could be applied as structure materials and soft magnetic materials (SMMs). High Curie temperature (>900 K) and strong phase stability below 1350 K of AlCoCuFeNi0.5 alloy confirm its practicability in a high-temperature environment. Atomic size difference (δ) is utilized as the critical parameter to explain the lattice strain and phase transformation induced by Ni addition.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.