Abstract
The annealing behaviour of swift heavy-ion tracks in apatite from different origins is studied as a function of their crystallographic orientation and the mineral composition. The tracks were generated by irradiating the apatite samples with 2.3GeV Bi ions, which have a comparable rate of energy loss to fission tracks in this mineral. The track radius was investigated using synchrotron-based small-angle x-ray scattering (SAXS) combined with ex situ annealing. Results indicate that tracks parallel to the c-axis are initially larger and anneal slower than those perpendicular to the c-axis. Natural variation in the mineral composition shows stronger annealing resistance of ion tracks with higher chlorine content. The SAXS results are consistent with previous studies on etched tracks and provide evidence that the orientation and composition effects are directly linked to the property of the un-etched track and not to preferential etchability. The study helps to connect the empirical studies on etched fission tracks to more fundamental solid-state processes.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.