Abstract

The investigation aims at assessing the influence of Ca2+/Ti4+ co-doping on the crystal structure and magnetic properties of the BiFeO3 multiferroic exhibiting cycloidal spin ordering in the polar phase. We show that increasing the content of the substituents results in reducing the stability range of the cycloidal antiferromagnetic structure in external magnetic field. Above the critical concentration corresponding to the composition with x=0.15, the cycloidal order is removed to enable the formation of a weak ferromagnetic state. The spontaneous magnetization characteristic of the doping-stabilized weak ferromagnetic phase is very close to the locked magnetization releasing upon the magnetic field-induced cycloidal ordering ↔ canted ordering transition observed in the compounds with x≤0.15. Since the doping-driven magnetic transformation is not accompanied by changes in the symmetry of the crystal lattice, the Ca2+/Ti4+ co-substitution provides a promising opportunity to combine switchable magnetization and polarization in a single phase.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.