Abstract

Among the terrestrial planets, Mercury's composition is characterized by two specific features: a high density and a low surface FeO content. Based on these two constraints, different geochemical models have been proposed, according to different formation scenarios. Here thermodynamical modeling is used to derive the mantle and crust mineralogy associated with these geochemical models. For each mineralogy, the electrical conductivity profile and associated electromagnetic data are computed. Due to the very different oxide/silicate ratios, most geochemical models proposed for Mercury's formation show very different electromagnetic signatures. As a result, future measurements with MESSENGER and BepiColombo missions will help differentiating between different interior models and different formation scenarios.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.