Abstract

The sources of spatial and temporal variation and rates of nutrient deposition via throughfall were studied for 9 months in the Anavilhanas archipelago of the Negro River, Brazil. A total of 30 events was sampled individually for rain and throughfall chemistry in a 1-ha plot of flooded forest. Throughfall samples were collected in 40 collectors distributed in five parallel transects in the study plot, while rain was collected in 4 collectors in an adjacent channel. Volume-weighted mean (VWM) concentrations of solutes in rain were consistently lower than in throughfall, except for H+, NO3- and NH4+. Ratios of VWM concentrations of rain to throughfall indicated that K+, followed by Mg2+ and PO43-, were the most enhanced solutes as rain passed through the forest canopy. The deposition of solutes varied significantly among transects, except for Na+ and Ca2+, and was significantly correlated with maximum flooding depth, foliar nutrient content soil fertility and canopy closure for most solutes. The concentrations of PO43- and most major ions were higher in throughfall compared to those in rain due to canopy exchange and dry deposition. In contrast, NO3-, NH4+ and H+ were retained due to immobilization by leafy canopy and ion exchange processes. Solute inputs via throughfall (not including stemflow) to a floodplain lake (Lake Prato) of the archipelago accounted for 30 to 64% of the total for most solutes in the lake at high water, which indicates that throughfall is an important source of nutrients to the aquatic ecosystem of the Anavilhanas archipelago.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.