Abstract
Silicon stabilized tricalcium phosphate (Si-TCP) is formed, among other phases, as a result of sintering hydroxyapatite (HA) in the presence of silica (SiO2) at >800°C. Calcium phosphate films sintered at 1000°C on quartz substrates are examined with and without additional SiO2 added to the starting precipitate. Data from transmission electron microscopy (TEM) and X-ray photoelectron spectroscopy (XPS) separate the undoped film morphology into a surface layer with a monoclinic crystal structure P21/a characteristic of α or Si-tricalcium phosphate and grain size in the range 100–1000 nm and a substrate layer with a crystal structure which is predominantly apatitic P63/m and grain size in the range 30–100 nm. The silicon content is greatest in the substrate layer. The addition of SiO2 to the film material during fabrication induces a more uniform grain size of 10–110 nm and a higher Si content. The structural and phase evolution of these films suggests the nucleation of α-TCP by the local formation of Si-TCP at a SiO2-hydroxyapatite interface. The results are consistent with X-ray diffraction studies and are explained by a model of nucleation and growth developed for bulk powders.
Paper version not known (Free)
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.