Abstract

Degradable polymers are under intense development for sustainability and healthcare. Evidence has accumulated that the chemical reaction that decomposes a polymer an also grow a crack. Even under a small load, the crack speed can be orders of magnitude higher than the overall rate of degradation, leading to premature failure. Here, we demonstrate that a crack slows down markedly in a composite of two degradable materials. In a homogeneous degradable material, the stress concentrates at the crack tip, so that a relatively small applied stretch induces a high stress and a high rate of reaction. The fracture behavior of a composite that consists of two degradable materials, a stiff material for the fibers and a compliant material for the matrix, with strong adhesion between both, is different: The soft matrix blunts the crack and distributes the stresses at the crack tip over a long length of the fibers. The same rate of reaction requires a larger applied stretch. This stress de-concentration retards crack growth in the composite. We demonstrate this concept using a composite made of stiff polydimethylsiloxane (PDMS) fibers in a soft PDMS matrix. In the presence of water molecules in the environment, siloxane bonds in the PDMS hydrolyze, causing hydrolytic crack growth. We show that a hydrolytic crack grows much more slowly in a PDMS composite than in homogeneous PDMS, and may even arrest in the composite. It is hoped that this concept will contribute to the development of degradable materials that resist premature failure.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call