Abstract

EOR is a semi-reaction of direct ethanol fuel cells (DEFCs), and determines the performance of the DEFCs. Therefore, it is very important for EOR to rationally design an electrocatalyst with excellent activity, stability and CO-resistance. Based on this, we report the synthesis of MOF based composite catalysts by a facile method, which is formed by combining polyaniline hydrogel (PANH) with MOF 1 and carbon cloth (CC). At the same time, the structures of the composites were characterized by XRD, SEM and XPS. Under the optimum conditions, the j value for EOR is 107 mA cm−2 under alkaline conditions at 0.6 V, which indicates that composite 2 has excellent catalytic activity for EOR, and is superior to that of the previously reported nickel-based catalysts for EOR. The Tafel slope and the exchange current density of composite 2 are 88.9 mV dec−1 and 1.95 × 10−5 A cm−2 respectively. In addition, the j value of composite 2 was 65% of the original value after 1000 CV cycles. However, when the electrolyte was changed into the original one (1 M KOH + 1 M EtOH), the j value returned to 74% of the original value. Based on the excellent electrocatalytic performance, good stability and anti-CO poisoning, composite 2 is expected to be an economic, efficient and CO poisoning resistant electrocatalyst for EOR.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.