Abstract

Efficient extraction of maximum available power from photovoltaic (PV) systems can be deteriorated due to the vulnerability to weather conditions, especially, under partial shading conditions (PSCs). This paper presents a robust maximum power point tracking (MPPT) algorithm which is able to work under any level of PSC efficiently, accurately, rapidly and with no increase in complexity. The proposed algorithm employs the composite trapezoidal rule to locate the actual maximum power based on trapezoidal area estimation concept, with the assist of adaptable step size perturbation and observation (P&O) algorithm. Complex PSC levels have been chosen to guarantee the validity of the suggested algorithm to perform under any shading level. The simulation results approve the effectivity of the algorithm under three various cases of complex PSCs, and compared with performance of the conventional Perturbation and Observation (P&O) and Incremental Conductance (IC) MPPT algorithms. The results indicate the success of the proposed algorithm, and the weakness of the conventional algorithms in seeking the actual maximum power under PSC which is the global maximum power point (GMPP).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.