Abstract

Through the composition of two real-valued functions, we propose a new class of multi-period risk measure which is time consistent. The new multi-period risk measure is monotonous and convex when the two real-valued functions satisfy monotonicity and convexity. Based on this generic framework, we construct a specific class of time-consistent multi-period risk measure by considering the lower partial moment between the realized wealth and the target wealth at individual periods. With the new multi-period risk measure as the objective function, we formulate a multi-period portfolio selection model by considering transaction costs at individual investment periods. Furthermore, this stochastic programming model is transformed into a deterministic programming problem using the scenario tree technology. Finally, we show through empirical tests and comparisons the rationality, practicality and efficiency of our new multi-period risk measure and the corresponding portfolio selection model.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.