Abstract
A novel polymer/room-temperature ionic liquid (RTIL) composite material based on chitosan (Chi) and 1-butyl-3-methyl-imidazolium tetrafluoroborate (BMIM.BF(4)) was explored. The composite system can be readily used as an immobilization matrix to entrap proteins and enzymes. Hemoglobin (Hb) was chosen as a model protein to investigate the composite system. A pair of well-defined quasireversible redox peaks of hemoglobin were obtained at the Chi-BMIM.BF(4)-Hb composite-film-modified glassy carbon (GC) electrode by direct electron transfer between the protein and the GC electrode. Dramatically enhanced biocatalytic activity was exemplified at the Chi-BMIM.BF(4)-Hb/GC electrode by the reduction of oxygen and trichloroacetic acid. Thermogravimetric analysis (TGA) suggests that the Chi-BMIM.BF(4)-Hb composite has higher thermal stability than Chi-Hb itself. The Chi-BMIM.BF(4)-Hb film was also characterized by UV-visible spectra, indicating excellent stability in solution and good biocompatibility for protein. The unique composite material based on polymer and ionic liquid can find wide potential applications in direct electrochemistry, biosensors, and biocatalysis.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.