Abstract
BackgroundEsthetic dental restorations have gained increasing popularity. The surface of restorations should be smooth enough to achieve maximum esthetics and prevent the adhesion of microorganisms and food particles. This study aimed to assess the surface roughness and color change of composite specimens following airflow usage.MethodsIn this in vitro, experimental study, 30 Tokuyama composite discs were fabricated and randomly divided into three groups (n = 10) for the use of airflow with calcium carbonate/bicarbonate powder and conventional polishing with FlexiDisc. The surface roughness of the specimens was measured by profilometry while the color change was assessed by measuring the L*, a* and b* color parameters using spectrophotometry before polishing (T1). The composite specimens were then polished for stain removal, and their surface roughness as well as color parameters were remeasured after polishing (T2). Paired t-test and Tukey’s test were applied for within-group and between-group comparisons.ResultsSignificant differences were noted in roughness average (Ra) between airflow with calcium carbonate (0.251 ± 0.014 μm) and airflow with sodium bicarbonate (0.421 ± 0.208 μm), and between airflow with sodium bicarbonate and FlexiDisc (0.207 ± 0.076 μm) groups after polishing (P < 0.05). Regarding the correlation of change in surface roughness and color parameters at T1 and T2, an inverse correlation was noted between the change in surface roughness and all color parameters except for L*. In other words, reduction in surface roughness decreased the a* and b* color parameters.ConclusionsWithin the limitations of this study, the results showed that the airflow device used in this study had no significant difference with conventional polishing in terms of reduction in surface roughness and staining. Considering the cost and maintenance of the airflow device, it is not suggested as a suitable alternative to the conventional polishing procedures.Trial Registration Number: This study does not involve human subjects.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.