Abstract

Abstract Support vector machines (SVMs) have shown great potential for learning classification functions that can be applied to object recognition. In this work, we extend SVMs to model the appearance of human faces which undergo non-linear change across multiple views. The approach uses inherent factors in the nature of the input images and the SVM classification algorithm to perform both multi-view face detection and pose estimation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.