Abstract

Abstract In contrast to one-component Bose-Einstein condensate case, the vortices in two-component condensate can have various complicated structures. The vortices in a space-homogeneous Bose-Einstein condensate have been studied in this paper. It is shown that the vortex structure is described by three dimensionless parameters. This is totally different from the usual one-component condensate case,where an isolated vortex is described by a parameterless dimensionless equation. The two-component vortex structure strongly depends on the sign of “interaction” constant of the components. A few types of vortices with different qualitative structure are explored. We show that the “super-density vortices” can exist, when the “interaction” constant is positive. The “super-density vortices” have the near-axis density greater than the equilibrium density of a homogeneous space Bose-Einstein condensate. We also show that the vortices with opposite direction of the condensate component rotation near the axis and far off the axis can exist.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.