Abstract

A computational method for the simulation of damage and fracture propagation in laminated composites is presented. A quantitative evaluation of the global fracture toughness of composites is shown as a tool for monitoring the fracture stability of composites under sustained loading. Changes in overall structural properties such as natural frequencies and the fundamental buckling load are also computed with increasing load-induced damage. Structural degradation, delamination, fracture, and damage propagation are included in the simulation. An angle-plied composite plate structure subjected to inplane tensile loading is used as an example to demonstrate some of the features of the computational method.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.