Abstract

The need to understand and monitor the integrity of structural components made of composite materials is becoming critical, due to an increase of the use of composites in aerospace, civil, wind energy, and transportation engineering. Off-the-shelf piezoelectric transducers embedded inside the composites or bonded onto the structure surface are a possible solution for on-line structural health monitoring and non-destructive evaluation: they can be used to generate Lamb waves, which are able to detect damage. This article focuses on the behavior of two sets of woven fiberglass/epoxy specimens, one with embedded, one with surface-mounted piezoelectric wafer transducers (lead zirconate titanate). The specimens are tested under axial tensile fatigue at high stress ratio, and the transducers are interrogated in pitch-catch mode at different stages of the specimens’ life, while they are subjected to the mean test load (the testing machine is paused). A novel signal processing technique based on wavelet thresholding/denoising and Gabor wavelet transform is discussed. This technique identifies changes in boundary conditions, loading/unloading prior to damage and during damage. It appears to correlate the contour area changes with the so-called characteristic damage state observed in the literature in composite laminates under tensile fatigue.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.