Abstract

We present a key result from our optical integral field spectroscopic survey of 27 nearby ultra luminous and luminous infrared galaxies (U/LIRGs) from the Great Observatory All-sky LIRG Survey. Using spatially resolved multi-component emission line fitting to trace the emission line ratios and velocity dispersion of the ionized gas, we quantify for the first time the widespread shock ionization in gas-rich merging U/LIRGs. Our results show a fractional contribution to the total observed \Ha flux from radiative shocks increasing from a few percent during early merger stages to upwards of 60% of the observed optical emission line flux in late stage mergers. We compare our resolved spectroscopy to nuclear spectra and find that 3/4 of the galaxies in our sample that would be classified as "composite" based on optical spectroscopy are primarily characterized by a combination of star formation and merger-driven shocks. Our results have important implications for the interpretation of "composite" rest-frame optical spectra of U/LIRGs as starburst+AGN, as the shock emission combined with star formation can mimic "composite" optical spectra in the absence of any contribution from an AGN.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.