Abstract

Simple SummaryPolycaprolactone (PCL) is a bioresorbable and biocompatible polymer that has been widely used in long-term implants. However, when it comes to regenerative medicine, PCL suffers from some shortcomings such as a slow degradation rate, poor mechanical properties, and low cell adhesion. The incorporation of ceramics such as bioactive glasses into the PCL matrix has yielded a class of hybrid biomaterials with remarkably improved mechanical properties, controllable degradation rates, and enhanced bioactivity, which are suitable for bone tissue engineering. The use of conventional approaches (such as solvent casting and particulate leaching, phase separation, electrospinning, freeze drying, etc.) in realizing these composite scaffolds strongly affects the control of both the internal and the external architecture of scaffolds, including pore size, pore morphology, and overall structure porosity. Accordingly, 3D printing was used in this study because of the benefits offered over conventional methods, such as high flexibility in shape and size, high reproducibility, capabilities of precise control over internal architecture down to the microscale level, and a customized design that can be tailored to specific patient needs. The optimization of the scaffold structure was previously investigated in terms of architecture through the combination of the Taguchi method and CAD drawing, and, in this study, it was investigated by varying the composition of the composite material.Polycaprolactone (PCL) is widely used in additive manufacturing for the construction of scaffolds for tissue engineering because of its good bioresorbability, biocompatibility, and processability. Nevertheless, its use is limited by its inadequate mechanical support, slow degradation rate and the lack of bioactivity and ability to induce cell adhesion and, thus, bone tissue regeneration. In this study, we fabricated 3D PCL scaffolds reinforced with a novel Mg-doped bioactive glass (Mg-BG) characterized by good mechanical properties and biological reactivity. An optimization of the printing parameters and scaffold fabrication was performed; furthermore, an extensive microtopography characterization by scanning electron microscopy and atomic force microscopy was carried out. Nano-indentation tests accounted for the mechanical properties of the scaffolds, whereas SBF tests and cytotoxicity tests using human bone-marrow-derived mesenchymal stem cells (BM-MSCs) were performed to evaluate the bioactivity and in vitro viability. Our results showed that a 50/50 wt% of the polymer-to-glass ratio provides scaffolds with a dense and homogeneous distribution of Mg-BG particles at the surface and roughness twice that of pure PCL scaffolds. Compared to pure PCL (hardness H = 35 ± 2 MPa and Young’s elastic modulus E = 0.80 ± 0.05 GPa), the 50/50 wt% formulation showed H = 52 ± 11 MPa and E = 2.0 ± 0.2 GPa, hence, it was close to those of trabecular bone. The high level of biocompatibility, bioactivity, and cell adhesion encourages the use of the composite PCL/Mg-BG scaffolds in promoting cell viability and supporting mechanical loading in the host trabecular bone.

Highlights

  • Bone tissue engineering aims to mimic the biological environment

  • We presented for the first time a comprehensive and multifactorial characterization of a 3D-printed composite made of PCL and a novel Mg-doped bioactive glasses (BGs) [15]

  • The screw rotation speed was chosen as the main variable parameter in the fidelity optimization process. In both the formulations, as expected, PORE decreased and fibre diameter (FIBRE) increased by rising the extrusion rate (Figure 1)

Read more

Summary

Introduction

It aims to drive cells toward a defined differentiation pathway and to obtain newly formed functional tissue as a replacement for injured sites. In this perspective, one of the main challenges concerns the development of 3D, degradable, and porous structures simultaneously capable of bearing mechanical loads [1] and transmitting suitable mechanical stimuli to cells during tissue differentiation [2]. With the latest advancements of 3D scanning, design software, and printing technologies, additive manufacturing of individually customized tissue scaffolds can be created for clinical use [4]. The design of the scaffold structure starts from patients’

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call