Abstract
PurposeThe purpose of this paper is to investigate the feasibility of using rapid prototyping (RP) technologies (stereolithography (SLA), fused deposition modeling (FDM), and three‐dimensional printing (3DP)) for fabrication of the core of a composite sandwich structure.Design/methodology/approachControl cores of a flat geometry were fabricated from epoxy using SLA and from acrylonitrile butadiene styrene (ABS) plastic using FDM. Corrugated geometry cores were fabricated using SLA, FDM, and 3DP. Carbon‐epoxy composite sandwich structures were fabricated from all cores using a wet‐hand layup process with vacuum cure. The performance of each core was measured using a bend test to determine bending stiffness and failure load.FindingsBased upon bending stiffness and failure load, composite sandwich structures utilizing epoxy cores fabricated via SLA outperformed composite sandwich structures utilizing plaster powder and ABS plastic cores. Composite sandwich structures with corrugated ABS plastic cores outperformed those with flat ABS plastic cores by a margin well beyond that predicted by theory in both bending stiffness and failure load.Research limitations/implicationsThe marked improvement in stiffness and failure load of the composite sandwich structures with corrugated ABS plastic cores over those with flat ABS cores is not explained by the theoretical improvement due to an increased area moment of inertia and increased surface area. Additional research in the failure mechanism is warranted.Practical implicationsThe ability to easily create complex core geometries will allow for the ability to place enhanced structural features in the regions of high stress.Originality/valueThis paper demonstrates that cores fabricated via RP technology and containing enhanced structural features are suitable for carbon‐epoxy composite sandwich structures.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.